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Theorem 1 (ET) Let f : RY — R and h : REH! — R be C' functions. Suppose that the constrained
optimization problem
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admits a unique solution x*(a) with an associated Lagrange multiplier y*(a). If L(x, u,a) denotes

the Lagrangean then
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Proof. Let define the Lagrangean as L(z, u,a) = f(x) — ph(z,a)

Where the first order conditions are given by
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From the FOC we can obtain
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Example 2 Suppose that an agent faces a utility maximization problem
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where U € C' admits a unique solution. The envelope theorem shows that
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where p*(I) is the Lagrange multiplier. There is where it comes from the interpretation of the
Lagrange Multipliers as the Shadow Value of Income.

Remark 3 Other applications include :

e — Policy analysis in general as, for example,effects of wealth redistribution on welfare.
— Microeconomic Theory

* Hicksian demand and Expenditure function (MWG p. 69)
* Roy's Identity (MWG p.74)

* Shepard's Lemma (MWG p.141)

* Hotelling’s Lemma (MWG p. 138)



